STANDARDISATION and TRACEABILITY in LABORATORY MEDICINE

Mathias M. Müller
Institute of Laboratory Diagnostics
Vienna - Austria

LABORATORY MEDICINE

... an integrated discipline in health care:
risk assessment
diagnosis of health and disease,
follow-up and monitoring of patients.

... using physical, chemical, biochemical, immunological, molecular biological techniques for measurements of body fluids, tissues, and cells

ANALYTES - MEASURANDS

CATEGORY I Traceable to the SI **Reference Systems** creatinine cholesterol total/fractions enzymes electrolytes total/activity/free glucose steroids & thyroxine free/bound to proteins

CATEGORY II Not-traceable to the SI **Conventional RMs** (international agreement) coagulation factors glycoproteins isoforms/glycoforms proteins peptide-bond (biuret reaction) epitopes (antibodies)

BIOLOGICAL VARIATIONS

Matrix - Fluids

Serum - Plasma

Urine

Liquor

Ascites

Tissue

Cells

Factors

Age

sex

time of day (circadian rhythm)

posture (supine/upright)

serum/plasma

fasting/non-fasting

weight/overweight

seasonal influence

Intra-individual variations

	Analytical CV	Daily %	Weekly %	Monthly %
Na	0.6	1.4	0.8	1.3
K	1.0	7.8	6.7	7.3
Glucose	1.5	25.8	16.8	20.8
Creatinine	1.6	6.8	6.9	13.6
Uric acid	1.0	9.8	12.4	14.3
ALT (enzyme)	0.9	10.3	32.2	47.5

ANALYTICAL BIAS

Quantity - Result

International Comparison

IMEP- 17: Trace and minor constituents in human serum Certified value : $140.36 \pm 0.95 \text{ mmol} \cdot \text{L}^{-1} \left[U = k \cdot u_c \ (k=2) \right]$

Results from all participants (992 laboratories)

Amylase Comparison

IMEP- 17: Trace and minor constituents in human serum

Certified value : 56.8 ± 2.6 U·L⁻¹ [$U=k \cdot u_c$ (k=2)]

All reported results (863) arranged in method groups:

IFCC comparable methods; Different methods, Scandinavian level;
Different methods, Roche level; Different methods, Original level; Vitros 250-950, calculated to IFCC; Vitros 250-950, Scandinavian level; Vitros 250-950, calculated to Roche level;
Vitros 250-950, original level and Other/No info

Amylase Comparison

IMEP- 17: Trace and minor constituents in human serum
Certified value: 56.8 ± 2.6 U·L⁻¹ [U=k·u_c (k=2)]

Results from participants from EU Countries: Austria. Belgium. Denmark. Finland. Germany.

IMEP- 17: Trace and minor constituents in human serum

Certified value: $56.8 \pm 2.6 \text{ U} \cdot \text{L}^{-1} [U=k \cdot u_c (k=2)]$

Results from participants from North America: Canada and USA

- Difference in field methods
- Patient results not comparable

Need for Harmonisation

Analytical Bias - Therapeutic Consequence

HbA1c

Insulin-dependent patients

Cholesterol Measurements

Improved Cholesterol Measurement Accuracy Saves Health Care Dollars

NIST Contributions to National Reference System for Cholesterol

1967 - Pure Cholesterol SRM (SRM 911)

- 1980 Cholesterol in Serum
 Definitive Method
- 1981 First Cholesterol in Human Serum SRM (SRM 09)
- 1988 New Suite of Cholesterol in Serum SRMs at MedicalDecision Points
- 1997 New Suite of Fresh-Frozen Serum SRMs designed to address clinical analyzer commutability issues; Total-, HDL-, and LDL-Cholesterol and Triglyceride Values

Improvement in precision since 1968 has been estimated to save \$100M/yr in treatment costs

Bias in Cholesterol Measurement Effects Medical Decision-Making

Cholesterol Frequency Distribution of >20,000 **Mayo Clinic Patients** (with +1%, +3% and +10% limits around 240 mg/dL criteria point)

Cholesterol, mg/d	JŁ
-------------------	----

If measurement bias were:	Positives (>240 mg/dL) per 1000		redicte <u>"Posit</u>		
-10% bias -3% bias -1% bias	120 203 234		-15	-46	-129
0% bias	249	\exists	\prec	$\frac{1}{1}$	
+1% bias +3% bias +10% bias	263 300 446	ل	+14 _	+51	+197

AQAS - Method Target Values in 2 Control Samples

Analyte	LIA	EIA	MEIA	RIA
AFP	39	32	35	26
(ng/ml)	79	93	99	72
CEA	4	5	4	4
(ng/ml)	28	31	25	28
CA 19-9	12	21	26	15
(U/ml)	63	84	87	52
PSA	12	7	7	
(ng/ml)	120	70	80	

Performance of 2 Field Methods

EQUAS Results Clinical Guidelines for Decisions

NEED FOR INTERNATIONAL STANDARDISATION

- Characterisation of Analyte
- Clinical Needs
- Reference Procedure
- Reference Material
- Reference Laboratories

STANDARDISATION

A technical process to reach conformity of measurement procedures by applying highest scientific standards

REFERENCESISIEM

REFERENCE METHODS
REFERENCE MATERIALS
REFERENCE LABORATORIES

• ISO/EN 15195

Requirements for reference measurement laboratories in laboratory medicine

• EN 12286

Measurements of quantities in samples of biological origins – Presentation of reference measurement procedures

EN 12287

Description of reference materials

- FULL NATIONAL MEMBER SOCIETIES: 79
- AFFILIATE MEMBER SOCIETIES: 4
- CORPORATE MEMBERS: 38

- REGIONAL ORAGNISATIONS AFFILIATED WITH IFCC
 - Arabic Federation of Clinical Biology
 - ► Asian Pacific Federation of Clinical Biochemistry
 - Colabiocli Latin American Federation
 - **▶ FESCC Federation of European Societies**

ifcc

SCIENTIFIC DIVISION REFERENCE METHODS

ENZYMES

- ALAT, ASAT, Amylase, AP, CK, gGT, LDH
- Lipase (in preparation)
- BLOOD GASES ELECTROLYTES
 - Tonometry
 - $-pCO_2$
 - Na, K, Ca_{ionised}

PROTEINS

- Apo A1
- Hb
- HbA1c

AQAS Interlaboratory ComparisonSource: Austrian Clinical Chemistry Surveys

ANALYTE	1970	1982	1992	2001	2003	
Participants	36	269	603	1358	1812	
AP	33.9	11.5	5.6	5.9	5.1	
ALAT	67.8	17.2	5.0	5.9	5.7	
ASAT	36.3	20.8	5.3	6.0	5.8	
LDH	32.0	10.1	5.9	3.7	4.0	
CV %						

ASAT, HbA1c, myoglobin

SCIENTIFIC DIVISION REFERENCE MATERIALS

IRMM: in preparation

Apo A1	WHO: SP1	
Apo B	WHO: SP 3	
Albumin	WHO: 74/1	
Plasma Proteins	IRMM: CRM 470	946444
PSA, free, complexed	WHO: 96/668, 96/670	
ALAT	IRMM: 454	YYI
Amylase	IRMM: 456	
CK-MB	IRMM: 455	
gGT	IRMM: 452	VIII
LDH-1	IRMM: 453	
Cortisol	IRMM: 451	
HCG primary standards	WHO: 99/642, 650, 688, 69	92, 708, 720,
Lp(a)	WHO: 03/	

CRM 470's EFFECT ON CALIBRATION

MC = different Calibrators UC = CRM 470

ifcc SD

WG-CALIBRATORS IN CLINICAL ENZYMOLOGY (WG-CCE)

After

CV=3 %

Effect of Uniform Calibration on Various Methods

G. FERARD, J. M. LESSINGER 1998

TRACEABILITY

Number of Measurements

Property of the result related to national or international standards through an unbroken chain of comparisons all having stated uncertainties.

A: traceable to SI

B: non-traceable to SI

- •Int'l Rreference measurement procedure and int'l calibrator
- •Int'l Reference measurement procedure but no int'l calibrator
- •Int'l calibrator but no int'l reference measurement procedure
- •Manufacturer's measurement procedure but neither int'l reference measurement procedure nor int'l calibrator

IVD-Directive 98/79

The **traceability** of values assigned to calibrators and or control materials must be assured through **reference measurement procedures and reference materials** of a higher order

ISO Standards

In vitro diagnostic medical devices - Measurements of quantities in biological samples

- ISO 17511 Metrological traceability assigned to calibrators and control materials.
- ISO 18153 Metrological traceability of values for catalytic concentration of enzymes assigned to calibrators and control materials.

JOINT COMMITTEE on TRACEABILITY in LABORATORY MEDICINE

JCTLM
a global initiative,
formed
in Paris, June 12, 2002

http://www.bipm.org/enus/2_Committees/JCTLM.shtml

JCTLM

Joint Committee for Traceability in Laboratory Medicine

rers,

Establishment of a global

REFERENCE SYSTEM,

needs collaboration and mutual recognition between Professionals, Metrology Institutes, Regulators, and IVD-Industry

A JOINT VENTURE OF PROFESSIONALS

Focus on Standardisation and Traceability

- Excellence in Analytical Performance based on modern concepts of metrology and science
- Needs for Patients
- Impact on Clinical Decisions

...will add QUALITY and VALUE to CLINICAL CHEMISTRY and LABORATORY MEDICINE

